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We perform numerical studies of a reaction-diffusion system that is both Turing and Hopf unstable, and that
grows by addition at a moving boundary �which is equivalent by a Galilean transformation to a reaction-
diffusion-advection system with a fixed boundary and a uniform flow�. We model the conditions of a recent set
of experiments which used a temporally varying illumination in the boundary region to control the formation
of patterns in the bulk of the photosensitive medium. The frequency of the illumination variations can select
patterns from among the competing instabilities of the medium. In the usual case, the waves that are excited
have frequencies �as measured at a constant distance from the upstream boundary� matching the driving
frequency. In contrast to the usual case, we find that both Turing patterns and flow-distributed oscillation waves
can be excited by forcing at subharmonic multiples of the wave frequencies. The final waves �with frequencies
at integer multiples of the driving frequency� are formed by a process in which transient wave fronts break up
and reconnect. We find ratios of response to driving frequency as high as 10.
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I. INTRODUCTION

A system with a convective instability �1,2� allows the
possibility of pattern formation controlled by the upstream
boundary condition, since effects of the boundary grow with
downstream distance, whereas the results of initial condi-
tions are eventually swept downstream and out of the reactor.
A particularly interesting example of pattern formation con-
trolled by an upstream boundary is the so-called flow-
distributed oscillation �FDO� mechanism, which occurs
when the chemical medium undergoes a self-sustained oscil-
lation as it flows �3–6�. The essential mechanism of FDO is
that the phase of the chemical oscillator is set at the upstream
boundary, and the oscillations of each fluid element as it is
advected downstream result in recurring phase fronts at pe-
riodic downstream positions. If the boundary condition is
stationary, then the waves are stationary �3,7,8�, whereas
steadily oscillating boundary conditions can result in either
upstream or downstream traveling waves �4,6,9�.

A flow system with a fixed boundary is equivalent via a
Galilean transformation to a stationary medium with a mov-
ing �growing� boundary �4,9� and FDO has been demon-
strated experimentally in both situations. One of the more
exciting applications of the FDO mechanism is in biological
morphogenesis, where an oscillating pacemaker at the grow-
ing tip of an embryo or plant stem can imprint a periodic
pattern on the growing medium behind it �4,6,9,10�. Such a
mechanism has been observed in the somitogenesis process
in the chick embryo �4,9�. Laboratory experiments in chemi-
cal media have demonstrated FDO in a packed-bed reactor
with a flowing medium as well as in a stationary medium
with a moving boundary.

The theory was extended to include the possibility of dif-
ferential flow and diffusion. Stationary structures in a general
flow system with differential transport are referred to as
“flow- and diffusion-distributed structures” �FDS� �11–13�. It
was shown by means of linear analysis that in general two

sets of modes can be excited by an appropriate oscillatory
boundary condition �14�. One of these, associated with the
underlying Hopf instability, comprises the FDO waves �or, if
differential flow is important, there may instead be the so-
called differential flow instability or DIFI� and the other set
comprises Turing patterns, which are stationary with respect
to the medium.1 The essentials of this picture were confirmed
in recent experiments in a stationary medium with a moving
boundary, subject to strong differential diffusion �15�. FDO
waves were found to be controlled by the driving frequency
at the boundary, for appropriately chosen frequencies com-
parable to the medium’s natural oscillation frequency, while
at higher driving frequencies Turing patterns were excited.

Numerical simulations done in connection with the recent
experiments also showed results suggesting harmonic reso-
nances of both FDO and Turing modes, in addition to the
simple FDO and Turing modes that were expected, and those
resonances are the subject of this paper. What we mean here
by resonance is most easily appreciated in the context of a
flow system with fixed upstream boundary or, in the case of
the equivalent growing system, by considering a point that
remains at a constant distance from the moving boundary.
This may be illustrated by examining the space-time plots of
Figs. 3 and 4. �These figures will be discussed in more detail
later.� In both figures, the grayscale represents a chemical
concentration, and the rightward moving boundary is appar-
ent as a diagonal across the plot. The vertical spacing of the
stripes to the lower right of this diagonal represents the fre-
quency of a driving signal applied to the right of the bound-
ary, and wave patterns are excited in the medium to the left.
In each case, the dotted white line shows the trajectory of a
point moving at a constant distance behind the boundary. In
Fig. 3, the frequency of the waves as measured along this

1In view of the strong analogy with FDO waves, we refer to
Turing structures excited in this manner by the boundary as “Turing
waves.”
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line is identical to the driving frequency, whereas in the sec-
ond case �Fig. 4� it is twice the driving frequency. These two
plots then show examples of two different resonances, with
the frequencies of the driving signal and the resulting waves
related by different integer ratios. The frequencies for which
these integer ratios hold are specifically the frequencies as
measured at a constant distance behind the boundary or at a
point that is stationary in a frame of reference where the
boundary is stationary. As explained further in the next sec-
tion, this must be distinguished from the frequency as mea-
sured at a point that is stationary with respect to the medium.

Multiple integer resonances have also been seen in simu-
lations of flow systems without differential transport, but
with a sinusoidal modulation of the flow velocity �16�. As we
will argue below, the essential ingredients are the same in the
flow system with modulated velocity and in the system cur-
rently considered. In both cases, both boundary, with an as-
sociated steady signal, and superimposed oscillating signal
are present. A different but possibly related effect was ob-
served in simulations of the Oregonator model, where sta-
tionary waves break up into traveling waves with an integer
“firing number” when the flow velocity approaches a critical
value �17�.

The remainder of the paper is organized as follows. In the
Sec. II we briefly describe the generic FDO mechanism and
introduce our notation and conventions. We find it useful to
consider the system in two different frames of reference and
define variables associated with both frames. In Sec. III we
apply this discussion to the Lengyel-Epstein model of the
photosensitive chlorine dioxide-iodide-malonic �CDIMA� re-
action �18� �with parameters chosen in the range of both
Hopf and Turing instabilities, in agreement with experi-
ments� and describe our numerical simulations and the ex-
periments on which they are based. Simulation results show-
ing resonances are given in Sec. IV. Subsequently, in Sec. V
we discuss the essential ingredients of the mechanism of
resonance and argue that it is determined by topology and
geometry. We interpret the breakup and the reformation of
FDO waves as a type of constrained synchronization mecha-
nism in the spatially extended reaction-diffusion system,
where the tendency of diffusion to synchronize the chemical
oscillation operates under constraints imposed by the peri-
odically driven boundary conditions. Because the dynamics
is attracted to the limit cycle, which is a nonsimply con-
nected set in phase space, one can in fact apply some of the
same reasoning as in the theory of topological defects famil-
iar to field theorists and condensed-matter physicists �19�.

II. FDO MECHANISM: DEFINITIONS AND
NOTATION

As mentioned above, a flow system with a fixed inlet is
equivalent by way of a Galilean transformation to a station-
ary medium with a moving boundary. The resonances we are
interested in are most readily perceived in the flow system
�fixed-boundary� frame of reference, as they are marked by
integer ratios of frequencies as measured in this frame. Other
aspects of the FDO mechanism, on the other hand, are most
easily understood in terms of the moving-boundary or

“growing” frame of reference. In particular, the relationships
between various wave modes and underlying instabilities of
the medium are best understood when the medium is station-
ary. Likewise, an understanding of the essential kinematics
of FDO waves requires us to consider the behavior of a point
that is stationary with respect to the medium rather than the
boundary. The experiments that inspired the current work
were performed in a stationary medium with a moving
boundary. For these reasons, it is useful and sometimes nec-
essary to switch back and forth between the two reference
frames at will or to consider both simultaneously.

Therefore, we define two coordinate systems: the flow
system �fixed boundary or F� position and time coordinates �
and � and the growth �moving boundary or M� coordinates x
and t, related by the Galilean transformation

� = Vt − x ,

� = t , �1�

where V is the flow �or moving-boundary� velocity. Note the
sign reversal between the two position coordinates, which is
necessary if both the boundary velocity and the flow velocity
are taken to be positive. � can be interpreted as a point’s
distance behind the advancing boundary. It is proportional to
the time elapsed since a fluid element of the medium left the
boundary, while x is proportional to the time at which that
element left the boundary. Lines of constant x represent the
trajectories of points advected along with the fluid.

Dynamical equations can be transformed from one frame
to the other via the substitutions2
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A generic periodic traveling wave is described in F coordi-
nates by a function

���F� − kF��, ��� + 2�� = ���� , �3�

where � and k are the frequency and the wave number. �
stands for a generic dynamical variable or vector of dynami-
cal variables. Using Eq. �1�, this wave form can be re-
expressed in M coordinates as follows:

���F� − kF�� = ���Ft − kF�Vt − x�� = ���Mt − kMx� , �4�

where

�M = �F − kFV �5�

and

2Partial derivatives � /�t and � /�� are implicitly assumed to be
taken with, respectively, x and � held constant. This is the main
reason to distinguish the notation of the time coordinates.
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kM = − kF �6�

describe the temporal and the spatial periodicities as reck-
oned in the moving-boundary or the growth frame of refer-
ence. For the phase velocities c=� /k, we easily get the ex-
pected result that

cM = V − cF, �7�

i.e., the phase velocities undergo the Galilean transformation.
In the standard FDO mechanism, the waves are excited by a
periodic driving at the upstream ��=0� boundary. Matching
the periodicities at �=0 requires that �F, the frequency of the
waves in the fixed-boundary frame, is equal to the driving
frequency �D. Furthermore, if any given fluid element oscil-
lates as it is advected �or as it stays stationary in the moving-
boundary frame� with a natural frequency �0 determined by
the chemical oscillation mechanism, then we must have �M
=�0, and the periodic wave function � itself is determined
by the chemical oscillator’s limit cycle. The two conditions

�F = �D,

�M = �0 �8�

along with relations �5� and �6� suffice to derive the so-called
“kinematic” relations �4,6,9� for the wavelength and the
phase velocity of the resulting waves. These relations may
also be interpreted as expressing geometrical relationships
among the spatial and the temporal periodicities of the waves
and the oscillations �15�. In reality, each fluid element does
not oscillate independently, but it is coupled to nearby fluid
elements by diffusion, which can modify both the oscillation
frequency and the shape of the limit cycle �the functional
form ����� �20–22�. The kinematic relations remain valid
only if �0 is replaced with �M. The latter can be interpreted
as a kind of “effective natural frequency” that varies with the
wavelength. In the system we study in the current work,
variations in �M are small, so for most purposes �M =�0
=const is a good approximation.

In a medium with differential diffusion admitting Turing
structures, the latter may also be selected by means of an
oscillatory driving at the boundary. Turing structures by their
nature are stationary with respect to the medium, so in this
case �M =0, cM =0 and therefore, using Eqs. �5� and �6�,

�kM� =
��D�

V
�9�

or

� = VTD,

where TD is the driving period and � is the pattern wave-
length. The above equation means that as the boundary ad-
vances with speed V, it deposits behind itself one wavelength
of the Turing pattern for each cycle of the driving oscillation,
as shown in the schematic space-time diagram in Fig. 1.

In general, an oscillating dynamical system has an un-
stable equilibrium inside the limit cycle. An approximate de-
scription of the FDO waves that propagate into the medium
from the boundary can be found by considering boundary
conditions that are a small perturbation of the equilibrium

and deriving a dispersion relation for small-amplitude waves
of the form �14,22�

���,�� = A exp i��F� − kF�� , �10�

which should match the upstream boundary condition at �
=0. Since we are interested in perturbations with steady am-
plitude at the boundary, we therefore consider only purely
real values of �F while kF may be complex. A positive �nega-
tive� imaginary component of kF means that the wave grows
�damps� with increasing downstream distance. Growing
waves can be expected to saturate at some finite amplitude,
asymptotically approaching form �3� for large �. Therefore
nonlinear wave solutions can be predicted �to a first approxi-
mation� on the basis of the growing modes that are found
from the dispersion relation.

III. CDIMA REACTION IN A GROWING MEDIUM

We are interested in the photosensitive chlorine dioxide-
iodide-malonic acid �CDIMA� reaction, which was studied
in recent experiments �15�. We model the reaction math-
ematically by the Lengyel-Epstein �18� kinetic model, which
for an effectively one-dimensional medium is described in
the moving-boundary �growth� frame by the pair of coupled
equations

�tu = a − bu − 4
uv

1 + u2 − 	 + �x
2u ,

�tv = 
�bu −
uv

1 + u2 + 	 + d�x
2v� , �11�

or in the flow frame

��u = a − bu − 4
uv

1 + u2 − 	 + ��
2u − V��u ,

��v = 
�bu −
uv

1 + u2 + 	 + d��
2v� − V��v . �12�

Here u and v are the dimensionless concentrations of activa-
tor �iodide� and inhibitor �chlorite�, respectively; a, b, d, and
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FIG. 1. �Color online� Each oscillation of the driving signal
deposits one Turing wave as the boundary advances.

HARMONIC RESONANT EXCITATION OF FLOW-… PHYSICAL REVIEW E 80, 026209 �2009�

026209-3




 are control parameters; and 	=	�x , t� is a dimensionless
variable representing the intensity of illumination of the me-
dium. The effective ratio of inhibitor and activator diffusion
coefficients is given by 
d. We choose parameter values that
mimic the conditions of recent experiments �15�, namely, a
=22, b=1.3, d=1.07, 
=8.5, and V=20. In the experiments,
the growing medium, the moving boundary, and the driven
boundary conditions are all created by means of variations in
the illumination—a video projector creates a boundary mov-
ing at 0.42�0.08 mm /min. Specifically, we set

	 = 	min = 2 �x � Vt� ,

	 = 	0 + 	1 cos �Dt = 3 + cos �Dt �x  Vt� . �13�

The minimum illumination 	min corresponds to the low am-
bient illumination �approximately 10−3 W /cm2� that is
present in the experiments. The system undergoes a Hopf
bifurcation at 	�2.197, so the conditions are such that in
the region x�Vt free oscillations are allowed, while in the
rest of the space they are �mostly� suppressed and the con-
centrations instead oscillate with time as a result of the os-
cillating light intensity. The former region forms the growing
medium, while the latter sets the boundary condition at the
border of the growing region. In the region where 	=2, the
homogeneous steady state is subjected to both Turing and
Hopf instabilities.

Numerical solutions of the dispersion relation for small-
amplitude waves �Eq. �10�� are plotted in Fig. 2. As dis-
cussed in �22�, there are two physically relevant solutions for
each value of �F. We plot the growth rates Im kF and the
phase velocities cM =�M /Re kM in the moving-boundary
frame. One of the two solutions has a positive growth rate
for 0.20��F�1.75 and corresponds to FDO modes, while
the other grows for 4.21��F�6.60, corresponding to the
Turing modes. Note that the FDO modes occur for frequen-
cies near the natural oscillation frequency �0, and their phase
velocity has a pole at �F /�0=1. The Turing modes, on the
other hand, have zero phase velocity as they are stationary
patterns with respect to the medium. Their frequencies are
directly proportional �with a factor of V� to the wavelengths
of unstable Turing modes, thus obeying the geometrical re-
lationship of Eq. �9�. The dispersion relation describes the
behavior of small-amplitude perturbations to the unstable
equilibrium and, to a first approximation, we expect the
growing perturbations to lead to saturated finite-amplitude
waves at the same frequencies. Perturbations at other fre-
quencies are expected to be damped.

IV. NUMERICAL RESULTS: RESONANT DRIVING OF
FDO WAVES AND TURING PATTERNS

Recent experiments with the CDIMA reaction have dem-
onstrated the excitation of both FDO and Turing modes by
means of an oscillatory perturbation at a moving boundary
�15�. Rather than a small perturbation of the unstable fixed
point, the driving is achieved by means of the strongly vary-
ing illumination �Eq. �13��. �We will discuss the significance
of this difference below.� We have simulated these experi-
ments by numerically solving model �11� using an explicit

second-order algorithm with spatial step �x=0.2 and time
step �t=0.01. An example with driving frequency �D
=0.8�0 is shown in Fig. 3. The gray levels in this and the
following space-time plots represent the variable u as a func-
tion of space and time. The frequency 0.8�0 is within the
range where linear analysis predicts FDO modes �see Fig. 2�.
Traveling waves are indeed generated and their frequency fF,
as measured at a constant distance behind the boundary
�along the dotted white line in the figure�, is equal to the
driving frequency, in agreement with Eq. �8�.

As in all of the simulated space-time plots shown, two
main regions can be distinguished in this plot, separated by a
diagonal that marks the trajectory of the moving boundary.
To the right of this diagonal is the driving region in which
the variable illumination is imposed, and the chemical con-
centrations respond directly to the changes in illumination.
The resulting forced oscillations �due mainly to the illumina-
tion and not to self-oscillation� appear as horizontal bands on
this region of the plot. To the left of the moving boundary is
the active or pattern-forming region where the chemical sys-
tem oscillates freely at a constant illumination and patterns
are formed in response to the boundary condition. The active
region can further be subdivided into a transient region close
to the boundary—where waves propagate unevenly, have a
zigzag appearance, and may display various forms of
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FIG. 2. �Color online� Solutions of the dispersion relations for
small-amplitude waves. Each solution branch has positive growth
rate for a different range of frequencies. The growing modes on the
solid curve �blue online� correspond to FDO modes. Their phase
velocity has a pole near the natural oscillation frequency. The grow-
ing modes of the other solution branch �dotted curves, green online�
are Turing modes. Their phase velocity is zero in the moving-
boundary �M� frame of reference.
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complex transient behavior that will be discussed below—
and an asymptotic region farther from the boundary, in which
the waves are smooth and have frequencies and wavelengths
obeying kinematic relations. There is also a boundary layer
where the patterns are under the influence of the fixed x=0
boundary �at the opposite end of the medium from the
growth boundary�. Boundary layer effects were noted in the
experimental results �15�. For the current work, we are less
interested in the boundary layer than in the transient and the
asymptotic regions. In most cases, the boundary layer has a
fixed thickness. If the medium stops growing after reaching a
maximum length Lmax as it generally does in experiments,
then another boundary layer may form at the now fixed right
boundary x=Lmax while patterns that were formed under the
moving boundary’s influence persist in the middle of the
active region.

Figure 5 shows a simulation with driving frequency
�D /�0=5. This frequency is in the middle of the band in
which Turing patterns are predicted, and one in fact finds
asymptotic waves that are stationary with respect to the me-
dium �a characteristic of Turing patterns�. Further investiga-
tion shows that the activator and the inhibitor concentrations

are 180° out of phase, as expected for Turing patterns. The
wavelength of these Turing waves is given by �=VTD in
agreement with Eq. �9�. In other words, each cycle of the
driving signal generates one wave as the boundary moves.
This can be verified by a close inspection of the space-time
plot. The Turing patterns grow slowly and only reach their
full amplitude at a significant distance behind the advancing
boundary �or at a significant time after the boundary has
passed�. Initially, close to the boundary, a transient FDO-type
wave with �F=0 dominates. This FDO wave is excited by
the strong zero-frequency component in the driving signal as
we discuss below. However, as predicted by the dispersion
relation solutions �Fig. 2�, the FDO wave with �F=0 is
damped and it decays as the Turing mode begins to emerge.
Each cycle of the driving oscillation produces a small bump
in the first wave front of the transient FDO wave, and each of
these bumps eventually develops into a single Turing wave.

Both of the above examples �Figs. 3 and 5� show wave
patterns whose �flow-frame� frequency is equal to the driving
frequency, the standard situation for waves driven convec-
tively by the upstream boundary. In contrast, Fig. 4 shows a
simulation done at �D /�0=0.4. As in Fig. 3, FDO-type
waves emerge in the asymptotic region behind the boundary.
In this case, however, the waves have frequency �F=0.8�0

=2�D or twice the driving frequency. The other parameters
of these waves �wavelength, phase velocity, and growth-
frame frequency �M� obey the usual geometrical or kine-
matic relations, just as if they had been generated by a driv-
ing signal with �D /�0=0.8. Examining the space-time plot,
one can see that in the transient region behind the moving
boundary, the initially generated phase fronts undergo
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FIG. 3. Simple 1:1 driving of FDO waves by the oscillating
boundary. The driving frequency is �D /�0=0.8. A diagonal line
across the space-time plot marks the moving boundary between the
driving and the active regions. A dotted white line shows the tra-
jectory of a fiducial point following at a constant distance behind
the moving boundary. �F is defined as the wave frequency mea-
sured along this line.
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FIG. 4. Example of a 2:1 resonance of the FDO mode, with
�D /�0=0.4. Transient waves excited by the boundary undergo dis-
locations. Far behind the moving smoothly traveling phase waves
appear. Their frequency, measured at a position a constant distance
behind the moving boundary �i.e., along the dotted white line
shown in the plot� is twice the driving frequency supplied by the
boundary.
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dislocations,3 resulting in waves at the new frequency.
A harmonic resonance can also be seen in the Turing

modes, as in Fig. 6. Here the driving frequency is �D /�0
=2.5, where the linear dispersion relation predicts no un-
damped modes. However, what we find is Turing patterns
with the same wavelength as in Fig. 5, even though the driv-
ing frequency is half as large. In this case, for each cycle of
the driving signal the moving boundary deposits two Turing
waves rather than one. Examining the space-time plot, it ap-
pears that as before there is an �F=0 FDO wave that domi-
nates immediately behind the boundary. The oscillatory re-
sponse of the driving region ahead of the boundary is again a
rather small perturbation superimposed on the strong zero-
frequency component. As in the other example, each oscilla-
tion of the driving signal produces one slight but clearly
observable bulge in the first downstream FDO phase front.
These bulges at first seem to decay; but with more time, the
FDO wave damps and each of the bulges ultimately splits

into two Turing waves, which in turn reach full amplitude as
the FDO wave disappears.

What these four examples �Figs. 3–6� have in common is
that the oscillatory driving of the upstream driving region �in
front of the boundary� gives rise to waves which asymptoti-
cally emerge at a sufficient distance downstream �or behind
the boundary� and whose frequency, as reckoned in the flow
frame or at a constant distance behind the boundary, is an
integer multiple of the driving frequency �F=n�D, where
n=1,2 ,3. . . The examples shown above are in ratios of 1:1
or 2:1. The emerging asymptotic waves may be either Turing
or FDO, and they generally emerge downstream from a com-
plex transient region.

In other numerical integrations, we have observed similar
resonances at higher-integer multiples of the driving fre-
quency as well. Our results are summarized in Figs. 7 and 8
for the FDO and the Turing modes, respectively. In Fig. 7,
we plot the characteristics of the asymptotic FDO waves as
functions of the driving frequency. The ratio �F /�D of wave
frequency to driving frequency shows a staircase jumping
discontinuously from one integer to another. We emphasize
that the waves that eventually emerge have frequencies �F
within the range predicted by the linear dispersion relation
and obey the kinematic relations. Likewise for the Turing

3We use the word “dislocation” by analogy with an edge disloca-
tion in a crystal structure, based on how the phenomenon appears in
the space-time diagram, with wave fronts looking like crystal planes
with a dislocation.
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FIG. 5. Space-time diagram showing the excitation of Turing
patterns with wavelength controlled by the boundary forcing fre-
quency �D /�0=5.0. Immediately behind the boundary, there are
transient FDO waves, due to the strong zero-frequency component
of the driving. The Turing patterns emerge slowly as the zero-
frequency waves decay. �In this and the following figure, we show
only a segment of the system, far from the x=0 boundary layer.�
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FIG. 6. 2:1 resonant driving of a Turing pattern. The driving
frequency is exactly half that of Fig. 5 ��D /�0=2.5�, but Turing
patterns of the same wavelength are produced. One can see that, in
this case, each oscillation of the boundary condition produces two
Turing waves rather than one. As before, the Turing patterns take
time to emerge from the transient FDO waves.
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resonances �Fig. 8�, the waves that finally emerge have
wavelengths and frequencies within the range predicted by
linear analysis, even when the driving frequency itself is out-
side of that range.

A difference between the FDO and the Turing cases is that
we find some frequencies where Turing modes emerge that

are not locked to the driving frequency, but instead are near
the “free-running” �i.e., most unstable� Turing wavelength.
As a result of this, the jumps between steps of the resonance
staircase are not discontinuous as in Fig. 7 but instead sepa-
rated by smooth transitions.

As a general rule, we observed that, the higher the reso-
nance ratio �F /�D, the larger the transient region and the
longer it took the FDO waves to settle into a smoothly peri-
odic form. Some numerical fluctuations in the measured
wavelengths resulted from making measurements in a region
where the asymptotic wave form was not fully settled. Such
fluctuations are noticeable in Fig. 7 and generally increase
with higher ratios. We found no evidence of resonances with
�F /�D taking other rational values such as 1/3, 3/2, etc.;
only integer values were observed.

V. TOPOLOGICAL AND GEOMETRICAL
INTERPRETATION OF RESONANCE MECHANISM

In this section we offer a general qualitative explanation
of resonances, wave dislocations, and related phenomena in
FDO waves. We interpret the mechanism of the breakup and
the reformation of waves as a type of constrained synchro-
nization phenomenon in the extended medium.

We begin with a closer look at the space-time plots of
Figs. 3 and 4, focusing on the transient region a short dis-
tance behind the boundary. In both cases, the wave fronts
�black or white stripes� in this region have a zigzag appear-
ance: phase fronts speed up and slow down rather than mov-
ing uniformly as they do farther away from the boundary. In
the case of Fig. 3, the average slope is evidently the same as
that of the smoother waves farther downstream. The zigzags
gradually become smoothed out as the waves propagate
downstream. Such zigzags or “jumping” waves were noted
previously in FDO experiments �23� when the wave form
used for driving does not conform to the limit cycle of the
freely running chemical oscillator. Depending on details of
the system, these zigzags may persist much further down-
stream. In general, stronger diffusion tends to smooth the
zigzags more rapidly than weak diffusion, as we show in an
example below. In the second case �Fig. 4�, the wave fronts
immediately behind the boundary have qualitatively a similar
zigzag appearance as in Fig. 3, although their average slope
�corresponding to the inverse phase velocity� is steeper than
that of the wave fronts in the first example. Unlike the first
case, however, these zigzags do not grow smoother with
downstream distance, but instead they become more uneven
until a dislocation or a wave-front splitting occurs. Following
the white stripes in Fig. 4 along a vertical line, one can see
that at a certain point, a segment of each stripe disconnects
from a segment of the stripe to its left and reconnects to a
stripe segment immediately below it. The dislocation results
in reattached wave fronts with a less steep average slope
�thus, a faster phase velocity� than the initial ones. The un-
evennesses in the newly reformed waves decay with down-
stream distance, leading asymptotically to smoothly propa-
gating waves with a frequency �in the flow frame� twice the
driving frequency. To summarize, qualitatively similar zig-
zag wave fronts appear initially in both cases, but in one case
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the zigzags gradually damp, while in the other they grow
until they trigger a wave-front dislocation. We will argue that
a topological constraint lies at the root of this difference.

A. Driving signal shape and marking of periodic
positions

The transient behavior of oscillations near the boundary is
surely affected by the driving signal, which is not congruent
with the system’s natural limit cycle. Figure 9 shows the
two-dimensional phase-space trajectories of the Lengyel-
Epstein model’s response to varying illumination of form
�13� at several different frequencies. These curves model the
imposed oscillations that occur in the driving region to the
right �ahead� of the moving boundary and that in turn supply
the driving signal to the boundary of the active region. The
limit cycle of the freely oscillating system with 	=2 is
shown on the same axes. In all cases the chemical driving
signal differs significantly from the freely running limit

cycle, nor can it in any sense be considered a small pertur-
bation of the fixed point �as is implicitly assumed in the
linear analysis�. In all cases there is a significant sideway
displacement on average, which can be viewed as a zero-
frequency or a dc component within the driving signal. This
is unsurprising given that the average illumination in the
driving region is higher than in the active pattern-forming
region. With increasing frequency, the amplitude of the driv-
ing oscillation shrinks in comparison to the dc component.

Viewing the driving as a superposition of signals with
frequencies 0 and �D suggests that the response can be ap-
proximated by two superposed FDO waves of form �3�, both
assumed to be in the kinematic limit, so that �M =�0. This
view is consistent with the appearance of the transient region
in the space-time plots of Figs. 3–6. One wave, resulting
from the dc component of the driving, has �F=0 while the
other has �F=�D�0. Using Eqs. �4�–�6� we get for the two
waves kM0=�0 /V and kMD= ��0−�D� /V, respectively. The
two waves, described in moving-boundary coordinates by
the forms

�0 = ���0t −
�0

V
x�, �Osc = ���0t −

�0 − �D

V
x� ,

�14�

interfere constructively �i.e., have the same phase� at the
points x=2�nV /�D, for integers n, independent of t. The
addition of the dc component marks particular positions, im-
posing a spatial periodicity that is different from the wave-
length of the traveling wave.

The marking of periodic positions occurs more generally
with any driving cycle that differs from the limit cycle, be-
cause the deviations from the limit cycle are not equal on all
parts of the cycle, and the chemical system at each position
preserves the memory of deviations that occur in the particu-
lar part of the cycle where that element entered the active
region. Keeping in mind that x and � are proportional to the
time at which a particular element of the medium left the
boundary, and the time elapsed since it left the boundary,
respectively, we can see that two points at the same � but
separated by �x=2�nV /�D are equivalent, due to the peri-
odicity imposed by the boundary condition. As a result, the
space-time diagram of the chemical system can be split into
cells of width 2�nV /�D as illustrated in Fig. 10. Fluid ele-
ments �positions� within each cell are “marked” according to
the phase of the driving cycle at the time each element left
the boundary. The behavior of the system inside each cell is
identical to each other cell up to a combined space and time
translation.4

B. Phase kinematics and zigzags

In the kinematic limit of negligible diffusion, each point
in the medium at a particular value of x can be considered as

4The requirement for the complete equivalence of cells is that the
system is under no influences other than the periodic driving. The
assumption therefore breaks down at boundary layers �such as near
the fixed end of the medium opposite to the moving boundary� or in
the presence of aperiodic noise.
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an independent oscillator whose initial condition is set when
it enters the active region at time t=x /V. In this limit, oscil-
lators at different positions do not interact. As a further sim-
plification, suppose that, from its initial condition, each of
these oscillators is quickly attracted to the limit cycle and
subsequently runs along the limit cycle with some phase shift
that depends on the initial condition and therefore on x. In
other words, the phase-space vector u is given by

u�x,t� = u„�0t + ��x�… , �15�

where u��0t� represents the limit cycle �periodic so that
u��0t+2��=u��0t�� and ��x� is the position-dependent
phase shift.

First, consider the simplest case where the boundary con-
dition is stationary. In this case, each element enters the ac-
tive region with the same initial condition, but there is a
uniform phase shift gradient because they enter at different
times. Considering two points separated by a distance �x,
the one with larger x �to the right in the moving-boundary
frame� enters the active region �t=�x /V later and therefore
its phase is retarded by the corresponding amount

�� = − 2�
�t

T0
= − �0

�x

V
. �16�

The phase fronts �loci where �0t+��x�=const� on the space-
time diagram have a constant slope 1 /V: they are parallel to
the trajectory of the boundary.

Now, suppose that, instead of being static, the boundary
condition is oscillating at frequency �D, approximately but
not exactly following the �sped up or slowed down� limit
cycle. In this case, the phase advances by 2� for each driv-
ing cycle. Points separated by �x=VT=2�V /�D enter the
active medium at the same initial conditions although at dif-
ferent times. The phase advance of 2� that occurs between
two such points is added on top of the retardation caused by
the motion of the boundary and the fact that the second point
enters later. The net phase difference then is

�� = 2� − �0
�x

V
= 2��1 −

�0

�D
� . �17�

This means that the average phase shift gradient is

��

�x
=

�D − �0

V
. �18�

Thanks to deviations between the driving cycle and the limit
cycle, however, this gradient need not be uniform. It must be
periodic over the period �x=2�V /�D, but within this period
it may be steeper at some positions x than at others. The
same is true for the phase fronts, resulting in zigzags as in
the transient regions of Figs. 3 and 4. One can verify in those
pictures that bands of x values occur periodically where all
phase fronts move faster, alternating with bands where they
are slower. Portions of the driving cycle that is slow com-
pared to the limit cycle leave their imprints at values of x
where the slopes of the phase fronts are nearly the same as
the boundary, because in these places the phase gradient is
mainly due to the motion of the boundary.

We note that qualitatively the same effect �uneven phase
gradients and unevenly moving phase fronts� can occur in
the case where the boundary condition is stationary ��D
=0� but the boundary does not move uniformly. There is
again an average phase gradient �hence an average slope of
the phase fronts� determined by the average boundary veloc-
ity, but each portion of the medium preserves a memory of
the speed of the boundary at the time when the portion en-
tered the active region. When the boundary moved quickly,
the phase fronts move quickly. In experiments with growing
media and a sinusoidally modulated velocity, FDO waves
were generated with �flow-frame� frequency equal to the ve-
locity modulation frequency, while in numerical studies of a
flow system, a series of integer resonances was found. The
reasoning here suggests strongly that the underlying mecha-
nism is the same as in the resonant driving described here,
involving the same type of breakup of zigzag phase fronts.

C. Role of diffusion

The role of diffusion can be appreciated most easily in the
moving-boundary frame, where it is uncomplicated by ad-
vection. Since it smooths local nonuniformities, diffusion has
a synchronizing effect.

Both the smoothing of zigzag or jumping waves and the
dislocations of phase fronts can be interpreted as forms of
partial synchronization. The former smooths abrupt phase
shifts in favor of more gradual ones, while the latter leads
invariably to waves with �F closer to �0 than the original
transient ones, and thus to smaller average phase gradients.

Confirming the importance of diffusion in both of these
effects, in Fig. 11 we plot additional space-time plots for
�D /�0=0.8 and 0.4. The conditions are identical to those of
Figs. 3 and 4 except that the diffusion coefficients of both
activator and inhibitor are reduced by a factor of 10. Not
only do the transient zigzags of the phase fronts persist much
longer, but the breakup into higher-frequency lower-slope
waves fails to occur in the case �D /�0=0.4.

Having noted that the smoothing of jumping waves re-
duces the largest phase gradients and that the resonant wave

FIG. 10. �Color online� Dividing space-time into equivalent
cells. Points A and B lie along a line of constant � and are separated
by the width of one periodic cell, so they are equivalent in terms of
the periodicity.
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breakup reduces the average phase gradient, we see, how-
ever, that in neither case phase gradients are eliminated en-
tirely. The constraints imposed by the periodic boundary
forcing prevent this, as the phase shift per periodic cell can
only change by an integer. To see why, we can view the total
phase shift �� across a cell �at constant t� as composed of
two parts: one being the phase shift across the cell along a
line of constant �, which is the phase shift imposed by the
periodic driving, and another part due to the delay across the
cell, which is a result of the boundary’s motion. Because of
the periodicity, the former must always be an integer.

In an abstract sense, the reasoning that applies here is the
same as in the theory of topological defects familiar to field
theorists and condensed-matter physicists �19�. A useful
point of view is to parametrize space-time using the two
coordinates x and � and to consider u�x ,�� as a function of x
that evolves with changes in �. If one considers u�x� along a
line of constant �, this function is periodic with a period of
2�V /�D. �It is worth noting that, to the extent that the
boundary forcing is strictly periodic, this periodicity in x is
also a strict periodicity, originating in a constraint imposed
by the boundary conditions. The periodicity in terms of t �or
��, by contrast, is of dynamical origin, and holds only when
transients have decayed.� This means that points separated
by 2�V /�D are effectively topologically identified, and if u
is confined to the limit cycle then the function u�x� is effec-
tively a mapping from S1, the unit circle, onto S1. Such map-
pings are characterized by an invariant integer winding num-
ber which cannot be changed by continuous deformations of
the map. The winding number in this case means the number
of times u winds around the limit cycle within each cell. The
configuration u�x� can evolve to one with a different integer
winding number, but only by departing from the limit cycle
and passing through the unstable fixed point at some point in

space-time. �As put differently, this means that at some point
the phase angle � is undefined and u�x� temporarily ceases to
be a mapping from S1 to S1.� In order for this to happen, a
dynamical barrier �the repulsiveness of the unstable fixed
point and the attractiveness of the limit cycle� must be
crossed.

By crossing this barrier and changing the winding num-
ber, it is sometimes possible to reduce the overall phase gra-
dient. Specifically, if the phase shift �� across a cell along a
line of constant � changes from 2� �the initial value it has
due to the driving�, to some other integer multiple 2�n, then
the physical phase shift across the cell �i.e., along a line of
constant t rather than constant �� becomes

�� = 2�n − �0
�x

V
= 2��n −

�0

�D
� , �19�

so that the average gradient is

��

�x
=

n�D − �0

V
. �20�

The new phase shift �19� includes both the phase shift at
constant � and the additional contribution from the phase
delay induced by the motion of the boundary. Since the rate
of change in phase shift along a line of constant � is what is
being measured by the frequency �F, the resonance mecha-
nism in which �F changes to a multiple of its original value
is precisely such a change as we are describing. This change
reduces the average phase gradient if

�n�D − �0� � ��D − �0� . �21�

For example, if �D=0.4�0, then we have �2�D−�0�=0.2�0
�0.6�0= ��D−�0�. By increasing the phase gradient along a
line of constant �, therefore, it is possible to decrease the
gradient along a line of constant x, and it is the latter gradient
that is acted on by diffusion.

Condition �21� can be interpreted as a condition that pre-
dicts when one may find an n :1 FDO resonance, since it
describes when a multiplication of the flow-frame frequency
can lead to a reduction in the physical phase gradient. This
gives a series of thresholds leading to the staircase plotted as
a solid line in Fig. 7. Specifically, each threshold �from the
nth to the �n+1�th resonance� occurs at the frequency �D for
which

�n�D − �0� = ��n + 1��D − �0� . �22�

Evidently, the actual thresholds found in the numerical simu-
lations fall at lower values of �D than the ones predicted by
Eq. �22�. This can be understood by recalling that a change
in winding number requires the surmounting of a dynamical
barrier. The barrier becomes more likely to be overcome as
the phase gradients increase �i.e., the system is driven farther
from its preferred state of synchronous oscillation� and/or as
diffusion coefficients increase.

In the analogy with topological defects �19�, diffusion
plays the same role as gradient terms whose tendency is to
make the configuration of dynamical variables as smooth as
possible, while the chemical dynamics �the repulsion from
the fixed point and attraction to the limit cycle� play a role
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FIG. 11. Space-time plots for conditions identical to �A� Fig. 3
and �B� Fig. 4 except that the diffusion coefficients are reduced by
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analogous to the Higgs potential, providing a barrier against
the unwinding of phase gradients. According to this interpre-
tation, strengthening the relative effect of diffusion should
move the observed thresholds closer to the ones predicted by
Eq. �21� by making it easier for diffusion effects to overcome
the barrier. The finding that 2:1 resonance failed to occur
when the diffusion coefficients were lowered �Fig. 11� is
consistent with this idea.

The process of changing the winding number can be fol-
lowed explicitly in Fig. 12, which shows plots of u as a
function of x along a series of lines of constant �, i.e., at
points moving a constant distance behind the boundary.
These phase-space profiles are based on the same data as the
space-time plot of Fig. 4. Initially, this phase-space profile
winds once around the limit cycle in each unit cell of x
displacement. But as � increases �as one moves farther be-
hind the boundary�, a secondary loop develops along the
original phase-space loop, which grows until it becomes a
second full loop around the limit cycle. The progression is
analogous to the inverse of a period-doubling transition in a
temporal oscillator. In contrast, Fig. 13 shows the corre-
sponding phase-space profiles along cross sections of the
space-time diagram �Fig. 3�, in which case the doubling fails
to occur. From these cross sections, one can see that the kink
which is initially present on the phase-space loop fails to
grow into a second full loop and instead becomes smoothed
out.

To summarize, the smoothing of transient zigzags and the
resonant wave breakup or dislocation mechanism can both

be viewed as processes that smooth phase differences across
space. In this sense, they are synchronization mechanisms.
The dislocation, however, requires overcoming a dynamical
barrier and, in general, neither process is capable of elimi-
nating phase gradients completely due to the topological
constraint that requires the phase winding number to change
only by discrete units within each of the periodic cells im-
posed by the boundary driving.

D. Generality of resonance mechanism

The underlying pattern-forming instabilities of the me-
dium in question �irrespective of boundary conditions and
forcing� are Turing and Hopf instabilities. The FDO modes
are consequences of the Hopf instability being driven by
oscillatory boundary conditions. The uniformly oscillating
mode �kM =kF=0� always has the highest growth rate among
the FDO modes, and evidently a uniformly oscillating state
is the preferred state of the medium, which is approached as
closely as possible given the boundary conditions. Boundary
conditions that drive the system at frequencies other than the
natural frequency create phase gradients �i.e., traveling phase
waves�. If the frequency is far enough away from the natural
frequency, and diffusion is strong enough, and if the period-
icity imposed by the boundary conditions permits it, then the
configuration may readjust itself to come closer to the pre-
ferred state of uniform oscillation. In general, the periodicity
does not permit the unwinding of the entire phase gradient,
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FIG. 12. �Color online� Profiles of phase-space variables along lines of constant � �i.e., at constant distance behind the moving boundary
with x varying� for a case with 2:1 resonance. The profiles evolve in a manner reminiscent of an inverse period-doubling transition, adding
an extra loop around the limit cycle. For reference, the limit cycle of the batch system is shown as a thin curve �pink online� in the
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but only a portion, because the phase winding number can
only change by integer units within each periodic cell. This,
then, is the essence of a quite general mechanism. Something
analogous is recognizable in the results of simulations in
which the flow velocity is modulated �16�.

The details of the breakup mechanism can vary within
this framework. As an example, the space-time plot in Fig.
14 shows a simulation of the same CDIMA medium driven
at the boundary by a harmonic perturbation of the unstable
fixed point instead of by the varying illumination. The
boundary condition is

�u

v
�

�=0
= �u0 + 0.15 cos �D�

v0 + 0.15 sin �D�
� , �23�

where �D=0.3�0 and the unstable fixed point is �u0 ,v0�. In
this form of driving, chemical concentrations are manipu-
lated directly rather than via the illumination. FDO waves at
the driving frequency grow slowly, eventually developing an
instability which leads to their breakup and reformation into
waves with �F=3�D. In this case, the reformation happens
via an intermediate step, where Turing-like stripes begin to
form at each dislocation, and then disappear again with the
growth of the reformed FDO wave. The addition of a small
zero-frequency component to this harmonic perturbation was
found to accelerate the breakup as one would expect based
on the discussion above in Sec. V A, whereas in the case
with driving by illumination at the boundary �where the zero-
frequency component is much stronger� the breakup is even
more prompt and occurs without the intermediate stage of
Turing stripes.

In the case of the driving of the Turing instability, the
most unstable wave number for Turing patterns is in the

middle of the range of unstable wave numbers, and this gives
the preferred wavelength for Turing patterns. Analogously to
the FDO case, the boundary conditions can drive Turing pat-
terns away from this preferred wavelength, but if the im-
posed wavelength is too far from the preferred value then the
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FIG. 13. �Color online� similar to Fig. 12, but at a higher driving frequency giving 1:1 resonance. Instead of expanding into a second full
loop, the small kink on the phase-space profile becomes smoother.
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FIG. 14. Growth and breakup of FDO waves driven by a har-
monic perturbation of the fixed point �Eq. �23�� instead of by illu-
mination. The driving frequency is �D=�0 /3, resulting in a 3:1
resonance. The vertical lines are guides to the eye illustrating the
spatial periodicity �cells� imposed by the boundary oscillation.
Since this is a 3:1 resonance, there are two dislocation events per
cell, rather than one as in the 2:1 case. In this case each dislocation
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pearance of Turing-like waves.
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imposed patterns break down, either by doubling or tripling
the wave number �integer resonance� or by some other ad-
justment resulting in new waves near the preferred wave-
length. A key difference between the FDO and the Turing
cases is that the preferred wave number for FDO is zero,
while for the Turing patterns it is nonzero. Turing resonances
will be studied more fully in another publication.

VI. CONCLUSIONS

We studied the selection of Turing patterns and FDO
waves by oscillatory forcing at a moving boundary. Whereas
previous discussions of patterns formed by driving at a mov-
ing or inflow boundary have assumed either that the bound-
ary condition was stationary or that an oscillatory forcing
would lead to waves at the same frequency as the forcing, in
this case we examined cases where the frequency of the
waves produced is an integer multiple of the forcing fre-
quency.

It is important to keep in mind that the frequencies �as
measured in the fixed-boundary frame� of all of the
asymptotic wave patterns fall within the ranges for which the
linear dispersion relations predict either FDO or Turing pat-
terns. The available asymptotic waves are determined by the
medium itself and are based on the underlying Hopf and
Turing instabilities of the medium. The role of forcing at the
boundary is simply to excite one or another of the competing
wave patterns in the medium. As noted in �15�, these patterns
can be quite stable once excited—they maintain themselves
after losing diffusive contact with the boundary and resist
encroachment by boundary layers after the boundary stops
moving. The current results show that a wave pattern can be

excited by a more indirect mechanism than was previously
considered. Boundary forcing may produce transient waves,
which rearrange themselves via the splitting of wave fronts,
resulting in waves at twice the frequency of the driving.

In general, for both the Turing and the FDO cases, we
found that the asymptotic waves, if they have a frequency
different from the driving frequency, have a frequency closer
to some preferred frequency for that type of wave. In the
case of FDO, that preferred frequency is the natural oscilla-
tion frequency of the underlying chemical system, and the
preferred pattern is a uniform synchronous oscillation. The
preferred Turing pattern, on the other hand, has a wavelength
corresponding to the most unstable Turing mode. Under the
right conditions, a transient wave pattern may split up so as
to approach the preferred pattern more closely. The possibil-
ity of this happening is constrained by topological con-
straints imposed by the boundary conditions.

Diffusion is essential to the resonance mechanisms we
consider. The resonant breakup of waves does not always
occur where it is topologically permitted, because the chemi-
cal dynamics �understood as the repulsiveness of the un-
stable fixed point and the attractiveness of the limit cycle�
presents a dynamical barrier that must be overcome.
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